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Inverse coefficient problems for equations of elastoplastic filtration of fluids in a porous medium in the re-
gime of reduction and recovery of pressure have been solved by applying the methods of identification of pa-
rameters and deterministic moments. Examples of determining the piezoconductivities of a bed in the regimes
of reduction and recovery of pressure in a well are given, where the values of the solution of the correspond-
ing direct problem determined at the given points of the bed are used as the initial information.

Problems of elastoplastic filtration of fluids are of great interest in connection with the exploitation of oil and
gas fields at great depths. In deep-lying oil and gas deposits, especially at anomalously high bed pressures, the pres-
sure in a bed is reduced appreciably during exploitation, which leads to the appearance of high effective stresses on
the bed. This in turn causes considerable deformations of the skeleton of bed rocks. One of the characteristic features
of the occurrence of deformation of a bed at large depths is the disturbance of the deformation elasticity accompanied
by the appearance of plastic (irreversible) changes in the bed characteristics. For the first time, the irreversibility of the
change in the penetrability of oil beds has been noted in [1, 2], although in petroleum practice such reductions in the
collector properties of beds during the time of their exploitation (i.e., a decrease in bed pressure) have long been
known. Model schematization of an elastoplastic regime of filtration has been suggested for the first time in [3, 4],
and it formed the basis for the formation of notions of elastoplastic filtration as a whole, as well as of estimation of
its characteristics. We note that in [3, 4], in both the regime of reduction and recovery of bed pressure, basic relations
of the dynamics of porosity, permeability of a bed, and of fluid viscosity depending on the current pressure were taken
as linear. With allowance for the nonlinearity of the deformation of a bed [5], the equations of the elastoplastic regime
of filtration are given in [6]. At large depths oil pools adapted to slightly cemented terrigenous traps, especially with
an anomalously high bed pressure, lose their stability and integrity with increase in effective stresses. This leads to de-
struction of the skeleton of the bed rocks and to sweeping out of the solid particles formed onto the surface together
with the extracted oil. This can cause great technological troubles in the process of both oil extraction and opening up
of the field. Models of elastoplastic filtration of fluid in unstable collectors are suggested in [7, 8]. An analysis of the
results of implementation of the model shows that in unstable collectors the factors of irreversibility of deformation
and instability of a bed exert reciprocal back actions on the collector properties of the bed.

The inverse coefficient problems of filtration in an elastic regime for beds with porous and fractured-porous
collectors were considered to be of particular advantage and were used for developing engineering procedures for de-
termining the bed parameters. However, in an elastoplastic regime the inverse problems virtually have not been stud-
ied; the evaluation of the plastic properties of rocks was made on the basis of hysteresis changes in the collector
properties of a bed in the regime of reduction and recovery of pressure. In the present work, for the model suggested
in [3, 4] inverse coefficient problems have been solved, and the piezoconductivities of a bed in the regimes of reduc-
tion and recovery of pressure have been estimated. In order to check the stability of the inverse problems, the initial
information was obtained by solving the corresponding direct problems with prescribed coefficients of the equations.
To solve the problems posed we use the methods of identification [9, 10] and of deterministic moments [11]. It should
be noted that in [10] a wide class of inverse problems described by partial differential parabolic-type equations was
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investigated. The equations of elastoplastic filtration of a fluid in a porous medium in the one-dimensional case [3]
have the form

↓ 
∂p

∂t
 = a1 

∂2
p

∂x
2 ,   ↑ 

∂p

∂t
 = a2 

∂2
p

∂x
2 ,   a1, a2 = const > 0 . (1)

First, we consider the problem of determining a1 by the identification method. Let x1, x2, ..., xn be the char-
acteristic points of the bed at which measurements of reductions in the bed pressure, which are well-known functions
of time zj(t), 1 ≤ j ≤ n, and 0 ≤ t ≤ T, are made.

We will seek a1 from the condition of the functional minimum:

J (a1) = ∑ 

j=1

n

∫ 
0

T



p (xj, t) − zj (t)

2
 dt . (2)

The condition of stationarity of functional (2) will have the form

dJ (a1)
da1

 = 2 ∑ 

j=1

n

∫ 
0

T



p (xj, t) − zj (t)

 w (xj, t) dt = 0 , (3)

where w = ∂p ⁄ ∂a1. We will expound into a series the function p in the vicinity of a
m

1 to within second-order terms:

  p
m+1

 (x, t) C p
m

 (x, t) + 
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m+1
 − a1

m 


 w
m

 (x, t) . (4)

Having substituted expansion (4) into (3) instead of p, we obtain a linearlized relation for the parameter  a
m+1

1:
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whence the following approximation of  a
m+1

1 can easily be calculated if the functions p
m

(x, t) and w
m

(x, t) are known:
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To obtain an equation for the function w
m

(x, t), we linearize the first equation of (1) with respect to the solu-
tion on the lower iteration layer:
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 ,   δa1 = a1

m+1
 − a1

m
 . (6)

Substituting expansion (4) into Eq. (6) and equating to zero the coefficients at δa1, we find the following sys-
tem of equations:
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2  , (7)

518



which, at a given value of a
m

1, can be solved successively by one of the well-known numerical methods. The boundary
and initial conditions for the function w result from the corresponding conditions for the function p by differentiating
them with respect to the parameter a1.

We will consider the numerical implementation of the above method using as an example the determination
of the parameter a1 in the first equation of (1) in the final bed [0, L] with the initial and boundary conditions

p (x, 0) = p0 ,   p (0, t) = pw ,   p (L, t) = p0 ,   p0, pw = const . (8)

First, we numerically solve the first equation with conditions (8) at the given value of a1 and find the so-
lution at the points xj, j = 1, n

___
. Then as the "data of measurements" we use z(xj, tk)  = p(xj, tk), where tk is the

discrete time for which the solution p(x, t) has been found. This time is selected from the grid time layer used
subsequently for a difference solution of the problem. The values of z(xj, tk) were calculated at five points xj = 5,
10, 15, 20, and 25 m for different values of tk. The first equation of (7) is also solved with conditions (8) and
the second one — with the following conditions:

w (x, 0) = 0 ,   w (0, t) = 0 ,   w (L, t) = 0 . (9)

The numerical algorithm of finding a1 can be constructed as follows: a) we prescribe a certain initial approxi-
mation a

0
1 (we assume that m = 0); b) we solve system (7) with conditions (8) and (9) determining the functions p

m

and w
m

; c) then (2) and (5) are calculated; d) assuming that a1 =  a
m+1

1, we repeat stages b) and c) until the needed ac-
curacy is reached.

As the criterion of the end of the iteration process one of the following inequalities can be used:




 p
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 − p

m


 < ε1 ,   
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m+1
 − a1
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 − J 
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 < ε3

or they taken together. The second equation of (1) in the regime of pressure recovery is solved under the following
conditions:

p (x, 0) = p1 (x) ,   
∂p
∂x



x=0

 = 0 ,   p (L, t) = p0 . (10)

We solve the system of equations (7) by the difference method [12]. In the region D


0 ≤ x ≤ L, 0 ≤ t ≤ T



 we

introduce the grid ωhτ = 


(xi, tk), i = 0, I

___
, k = 0, K

____
, xi = ih, tk = kτ, h = L ⁄ I, τ = T ⁄ K



 . We approximate the system of equa-

tions (7) on the grid ωhτ by an implicit finite-difference scheme to within O(τ + h2) (not indicating the iteration num-
ber over p):
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Api−1
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 − Bpi
k+1

 + Cpi+1
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 = − Pi ,
(11)

A1wi−1
k+1

 − B1wi
k+1

 + C1wi+1
k+1

 = − Wi − γ1Ri ,   i = 1, 2, ..., I − 1 , (12)

where

A = A1 = γ ;   B = B1 = 1 + 2γ ;   C = C1 = γ ;   γ = 
a1

m
τ

h
2

 ;   γ1 = 
τ

h
2 ;   Pi = pi

k
 ;   Wi = wi

k
 ;
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Ri = pi+1
k+1

 − 2pi
k+1

 + pi−1
k+1

 .

We approximate the initial and boundary conditions (8) and (9):

pi
0
 = p0 ,   p0

k+1
 = pw ,   pI

k+1
 = p0 , (13)

wi
0
 = p0 ,   w0

k+1
 = 0 ,   wI

k+1
 = 0 . (14)

To solve (11), (12) subject to (13), (14) we use the pivot method [12]. In the regime of pressure recovery, the algo-
rithm of finding a2 is similar to that used in finding a1 in the regime of pressure reduction.

The grid splits the intercept [0; L] on the axis x into 300 intervals and the time portion [0; T] into 1000 ones.
The "measurement data" were prepared at 5 × 10 "coordinate–time" points on the basis of the grid solution of the first
equation of (1) with the given parameters p0 = 50 MPa, pw = 30 MPa, a1 = 0.008 m2/sec, L = 30 m, T = 1000 sec
and of Eq. (2) with a2 = 0.015 m2/sec. The results of calculations on the identification of the parameters a1 and a2,
when a1

0 = 0.005 m2/sec and a2
0 = 0.01 m2/sec are assigned as a zero approximation, are presented in Fig. 1. An

analysis of the results shows that in the regime of pressure reduction the parameter a1 comes to the equilibrium point
on one side and is recovered practically with two iterations (Fig. 1a). When the initial information is prescribed at 2
× 10 "coordinate–time" points, the parameter approaches the equilibrium point with four iterations (Fig. 1a). In the re-
gime of pressure recovery, when the initial information was prescribed at 5 × 10 "coordinate–time" points, the parame-
ter a2 approaches the equilibrium point from one side with three iterations (Fig. 1b). Thus, the reduction in the
number of measurements along the coordinate which are used as the initial information in the identification problem
leads to an increase in the number of iterations.

Let us now go to the determination of the parameters (1) by the method of deterministic moments. The prin-
cipal advantage of using this method is that the relationships between the moments of the characteristics of the process
and the model parameters are more simple than the relationship between the full solution and the model parameters of
the process. Moreover, for some models it is impossible to obtain an analytical solution, while the moments can be
determined [11] from relatively simple analytical expressions. The scheme of application of the method is as follows:
first, one finds the solution of the hydrodynamic problem in the Laplace images. Then, the Laplace transformation
properties are used, which allow one to write, in an analytical form, the dependence of the moments of solution of the
direct problem on the parameters entering into Eq. (1). From these dependences the unknown parameters are then de-
termined.

We will consider the first equation of (1) in the final bed [0, L] with initial and boundary conditions (8).
There is also an additional condition

Fig. 1. Recovery of the values of a1 and a2 in the regime of reduction (a) and
recovery (b) of pressure. a1, a2, m2/sec.
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p (x1, t) = p~1 (t) ,   x1 2 [0, L] . (15)

The second equation of (1) in the regime of pressure recovery will be considered under conditions (10) and additional
condition

p (x1, t) = p~2 (t) . (16)

Our task is to determine the parameters a1 and a2. Going over to the Laplace image

p
_
 (x, s) = ∫ 

0

∞

exp (− st) p (x, t) dt ,

from the first equation of (1) and from (8), (15) we obtain

d
2
p
_

dx
2 − 

s

a1

 p
_
 = − 

p0

a1

 , (17)

p
_
 (0, s) = 

pw

s
 ,   p

_
 (L, s) = 

p0

s
 , (18)

p
_
 (x1, s) = p~

_
1 (s) . (19)

Substituting the solution of (17), (18)

p
_
 (x, s) = 

(pw − p0) sinh [(L − x) k1] + p0 sinh (k1L)
s sinh (k1L)

into Eq. (19) transformed as

pst

s
 + ∆p

_
1 (s) = p~

_
1 (s) ,

where ∆p
_

1(s) = p
_

(x1, s) − 
pst

s
, we find

pst

s
 + ∆p

_
1 (s) = 

(pw − p0) sinh [(L − x1) k1] + p0 sinh (k1L)
s sinh (k1L)

 ,   k1 = √ s

a1
 . (20)

We will expand each term of (20) into a power series in s. Moreover, we will avail ourselves of the series expansion
of the function sinh x and

∆p
_

1 (s) = ∆p10 − s∆p11 + 
s
2

2
 ∆p12 − ... ,   ∆p1l = ∫ 

0

∞

t
l∆p1 (t) dt ,   l = 0, 1, ... .

As a result, we have




L + 

L
3

3!
 k1

2
 + ...




 pst + s∆p10 − s

2∆p11 + ... =
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= (pw − p0) (L − x1) + p0L + 




(pw − p0) (L − x1)
3

3!
 + 

p0L
3

3!



 k1

2
 + ... . (21)

Equating the coefficients at 1, s, ... in (21), we obtain relationships for determining pst and a1. For this pur-
pose it is sufficient to have two such relations:

pstL = pwL + (p0 − pw) x1 ,   6La1∆p10 = (pw − p0) (L − x1)
3
 + (p0 − pst) L

3
 ,

from which we determine

a1 = 
(pw − p0) (L − x1)

3
 + (p0 − pst) L

3

6La∆p10
 , (22)

where pst = pw + 
p0 − pw

L
 x1, ∆p10 = ∫ 

0

∞

∆p1(t)dt = ∫
0

∞

(p~1(t) − pst)dt.

In Eq. (15) p~1(t) is determined as the solution of the corresponding direct problem at a1 = 0.008 m2/sec as
presented in Fig. 2. Calculations by Eq. (22) were performed at x1 = 5 m, L = 10 m, p0 = 50 MPa, pw = 30 MPa,
∆p10 = 15,631.8926 MPa⋅sec. The resulting calculated value a1 = 0.007996 m2/sec almost coincides with the given
value a1 = 0.008 m2/sec.

Now, we will consider the second equation of (1) subject to (10), (16) and determine the parameter a2. Hav-
ing applied the Laplace transformation, we obtain

d
2
p
_

dx
2 − 

s

a2

 p
_
 = 

p1 (x)

a2

 , (23)

dp
_

dx


x=0

 = 0 ,   p
_
 (L, s) = 

p0

s
 , (24)

p
_
 (x1, s) = p~

_
2 (s) . (25)

The solution of (23) and (24) has the form

Fig. 2. Graph of the function p~1(t). t, sec; p~1(t), MPa.
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p
_
 (x, s) = − 

1

2k3
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x
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0
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exp (k2u) p1 (u) du
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 ,   k3 = √a2s  .

At x = x1, having substituted the following relations into the modified condition (25):
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We will expand in a power series in s each term of Eq. (26) using the series expansion of the functions cosh
x, exp (x) and

∆p
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Equating the coefficients 1, s, ... in (27), we obtain relations from which we find a2:
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a2 = 
1

∆p20
 








L
2
 − x1

2

2
 p0 + ∫ 

0
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 (x1 − u) p1 (u) du + ∫ 
0

L
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 ,

where

∆p20 = ∫ 
0

∞

∆p2 (t) dt = ∫ 
0

∞

(p0 − p~2 (t)) dt .

(28)

To perform calculations by (28) we first solve numerically the second equation of (1) subject to (10) at the
given a2 = 0.015 m2/sec, then we calculate p~2(t). The graph of the function p~2(t) is shown in Fig. 3. Calculations by
Eq. (28) at x1 = 5 m, L = 10 m, p0 = 50 MPa, pw = 30 MPa, ∆p20 = 2171.0612 MPa⋅sec yield the value a2 = 0.017
m2/sec close to that given.

Thus, the method of deterministic moments allows one to find simple formulas for determining the unknown
parameters of the problem, in the given case — the coefficients of the equation. The calculations show that expres-
sions (22) for a1 and (28) for a2 are stable against perturbations of the functions p~1(t) and p~2(t), respectively. How-
ever, the method of deterministic moments is applicable only to linear problems, which limits its use in a wide class
of important, interesting problems that involve nonlinearity. Due to its broad application, the identification method is
preferred to the method of deterministic moments.

NOTATION

a1 and a2, coefficients of piesoconductivity of a bed in the regime of reduction and recovery of pressure,

m2/sec; a
m

1 and a
m

2, mth approximations of a1 and a2, m2/sec; h, grid step in the x direction, m; J(a1), minimized

functional; L, bed length, m; m, number of iteration; p, current pressure, MPa; p0, initial pressure in a bed, MPa;

p1(x), pressure distribution at the end of the reduction phase, MPa; pw, pressure in a well, MPa; pi
k, wi

k, grid solu-

tions corresponding to the point (xi, tk); pst, stationary solution of a direct problem at the point x = x1, MPa; p
_
,

Laplace transformation of p; p~1(t) and p~2(t), functions determining the values of p at the point x = x1 in the regime

of reduction and recovery of pressure, MPa; s, parameter of Laplace transformation; t, time, sec; T, maximum time
of pressure reduction, sec; u, variable of integration over the coordinate x, m; x, linear coordinate, m; zj(t) (j = 1, n

___
),

function of a change of p at xj (j = 1, n
___

), i.e., p(xj, t) = zj(t) j = 1, n
___

, MPa; ε1, ε2, ε3, given small quantities; τ,

grid step in time, sec. Subscripts and superscripts: st, steady-state regime; w, well; wx, correspond to the processes of

Fig. 3. Graph of the function p~2(t). t, sec; p~2(t), MPa.
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reduction and recovery of pressure; m above functions denotes that they were calculated at a1 = a
m

1 (or a2 = a
m

2);

overbar corresponds to Laplace image.
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